
Механические свойства стали 40Х | |||||||||
ГОСТ | Состояние поставки, режим термообработки | Сечение, мм | КП | σ0,2 (МПа)
|
σв(МПа) | δ5 (%) | ψ % | KCU (кДж / м2) | НВ, не более |
4543-71 |
Пруток. Закалка 860 °С, масло.
Отпуск 500 °С, вода или масло |
25 |
780 |
980 |
10 |
45 |
59 |
||
8479-70 | Поковки: нормализация |
500-800 300-500 |
245 275 |
245 275 |
470 530 |
15 15 |
30 32 |
34 29 |
143-179 156-197 |
закалка, отпуск |
500-800 | 275 | 275 |
530 |
13 |
30 |
29 |
156-197 |
|
нормализация | до 100 100-300 |
315 | 315 | 570 | 17 14 |
38 35 |
39 34 |
167-207 | |
закалка, отпуск | 300-500 500-800 |
315 | 315 | 570 | 12 11 |
30 30 |
29 29 |
167-207 | |
нормализация | до 100 100-300 300-500 |
345 | 345 345 |
590 | 18 17 14 |
45 40 38 |
59 54 49 |
174-217 | |
закалка, отпуск | до 100 100-300 300-500 |
395 | 395 | 615 | 17 15 13 |
45 40 35 |
59 54 49 |
187-229 |
Механические
свойства стали 40Х в зависимости от сечения |
||||||
Сечение, мм | σ0,2 (МПа) | σв(МПа) | δ4 (%) | ψ % | KCU (кДж / м2) | HB |
Закалка 840-860 °С, вода, масло. Отпуск 580-650 °С, вода, воздух. | ||||||
101-200 | 490 | 655 | 15 | 45 | 59 | 212-248 |
201-300 | 440 | 635 | 14 | 40 | 54 | 197-235 |
301-500 | 345 | 590 | 14 | 38 | 49 | 174-217 |
Механические свойства стали 40Х в зависимости от температуры отпуска | ||||||
Температура отпуска, °С | σ0,2 (МПа) | σв(МПа) | δ5 (%) | ψ % | KCU (кДж / м2) | HB |
200 | 1560 | 1760 | 8 | 35 | 29 | 552 |
300 | 1390 | 1610 | 8 | 35 | 20 | 498 |
400 | 1180 | 1320 | 9 | 40 | 49 | 417 |
500 | 910 | 1150 | 11 | 49 | 69 | 326 |
600 | 720 | 860 | 14 | 60 | 147 | 265 |
Механические свойства стали 40Х при повышенных температурах | |||||
Температура испытаний, °С | σ0,2 (МПа) | σв(МПа) | δ5 (%) | ψ % | KCU (кДж / м2) |
Закалка 830 °С, масло. Отпуск 550 °С | |||||
200 300 400 500 |
700 680 610 430 |
880 870 690 490 |
15 17 18 21 |
42 58 68 80 |
118 98 78 |
Образец диаметром 10 мм, длиной 50 мм кованый и отоженный. Скорость деформирования 5 мм/мин, скорость деформации 0,002 1/с | |||||
700 800 900 1000 1100 1200 |
140 54 41 24 11 11 |
175 98 69 43 26 24 |
33 59 65 68 68 70 |
78 98 100 100 100 100 |
Предел выносливости стали 40Х | |||
σ-1,
МПА |
J-1,
МПА |
n | Состояние стали |
363 470 509 333 372 |
240 |
106 106 5*106 |
σв=690 МПа σв=690 МПа σ0,2=690 МПа, σв=690 МПа σв=690 МПа Закалка 860 °С, масло, отпуск 550 °С |
Ударная вязкость стали 40Х KCU, (Дж/см2) | ||||
Т= +20 °С |
Т= -25 °С | Т= -40 °С | Т= -70 °С | Термообработка |
160 91 |
148 82 |
107 |
85 54 |
Закалка 850 °С, масло, отпуск
650 °С Закалка 850 °С, масло, отпуск 580 °С |
Прокаливаемость стали 40Х (ГОСТ 4543-71) | ||||||||||
Расстояние от торца, мм | Примечание | |||||||||
1,5 | 4,5 | 6 | 7,5 | 10,5 | 13,5 | 16,5 | 19,5 | 24 | 30 | Закалка 860 °С |
20,5-60,5 | 48-59 |
45-57,5 |
39,5-57 |
35-53,5 |
31,5-50,5 |
28,5-46 |
27-42,5 | 24,5-39,5 |
22-37,5 | Твердость для полос прокаливаемости, HRC |
Физические свойства стали 40Х | ||||||
T (Град) | E 10- 5 (МПа) | a 10 6 (1/Град) | l (Вт/(м·град)) | r (кг/м3) | C (Дж/(кг·град)) | R 10 9 (Ом·м) |
20 | 2.14 | 7820 | 210 | |||
100 | 2.11 | 11.9 | 46 | 7800 | 466 | 285 |
200 | 2.06 | 12.5 | 42.7 | 7770 | 508 | 346 |
300 | 2.03 | 13.2 | 42.3 | 7740 | 529 | 425 |
400 | 1.85 | 13.8 | 38.5 | 7700 | 563 | 528 |
500 | 1.76 | 14.1 | 35.6 | 7670 | 592 | 642 |
600 | 1.64 | 14.4 | 31.9 | 7630 | 622 | 780 |
700 | 1.43 | 14.6 | 28.8 | 7590 | 634 | 936 |
800 | 1.32 | 26 | 7610 | 664 | 1100 | |
900 | 26.7 | 7560 | 1140 | |||
1000 | 28 | 7510 | 1170 | |||
1100 | 28.8 | 7470 | 120 | |||
1200 | 7430 | 1230 |
Преимущества термообработки изделий из стали 40Х в кипящем слое по сравнению с традиционными способами: был исследован нагрев под закалку высокопрочных болтов из сталей 40Х и 38ХС. Из опытов следует, что при горизонтальном положении болта М24 в кипящем слое частиц корунда диаметром 0,32 мм, отапливаемом природным газом, медленнее всего температура повышается на оси болта в месте стыка его тела и головки. Скорость нагрева в этой точке почти вдвое меньше, чем на поверхности в середине болта, так что во избежание перегрева температура кипящего слоя не должна заметно превышать конечную температуру нагрева. В слое с температурой 900° С болт прогревается до 860° С примерно за 3 мин (термопара зачеканена на оси под головкой), в то время как в применяемых в настоящее время электропечах К-160 нагрев до 860° С длится, по нашим экспериментальным данным, 40 мин. За это время в электропечах образуется значительный слой отслаивающейся окалины, в то время как при нагреве в кипящем слое с двухступенчатым сжиганием поверхность получается чистой. Эксперименты показали, что для аустенизации достаточна выдержка болтов из обеих сталей при температуре слоя 860-870° С в течение 10-15 мин. Поскольку скорость охлаждения этих изделий в кипящем слое оказалась недостаточной, закалку осуществляли в масле. Отпущенные после закалки (410° С, 80 мин) болты отличались высокими показателями прочности при достаточной пластичности:
Сталь 40Х: σв=147-150 кгс/мм2, ан=3,84-3,27 кгс*м/см2, HB 345-360
Сталь 38ХС: σв=165-173,5 кгс/мм2, ан=3,18-4,41 кгс*м/см2, HB 400-430
(ударную вязкость ан определяли на образцах, предел прочности σв на целых болтах).
Параллельно болты М24 из стали 38ХС после выдержки в кипящем слое с температурой 910° С (15 мин) охлаждали в соляной ванне при 360° С (20 мин) с целью получения структуры нижнего бейнита. При достаточно высокой прочности (σв = 163 кгс/мм2) была получена значительно большая ударная вязкость (8,65- 10,6 кгс-м/см2). Наконец, часть болтов из стали 38ХС после такого же нагрева выдерживали в масле в течение 42 с, а затем переносили в кипящий слой температурой 360° С. Такой режим позволил повысить предел прочности до 171,5-173 кгс/мм2, но несколько снизил ударную вязкость (ан = 6,25-6,72 кгс.м/см2). Как показали исследования, нагрев в течение 8-10 мин в слое температурой 910° С обеспечивает превращение исходной ферритокарбидной смеси в аустенит и получение достаточно однородных свойств.
Краткие обозначения: | ||||
σв | - временное сопротивление разрыву (предел прочности при растяжении), МПа |
ε | - относительная осадка при появлении первой трещины, % | |
σ0,05 | - предел упругости, МПа |
Jк | - предел прочности при кручении, максимальное касательное напряжение, МПа |
|
σ0,2 | - предел текучести условный, МПа |
σизг | - предел прочности при изгибе, МПа | |
δ5,δ4,δ10 | - относительное удлинение после разрыва, % |
σ-1 | - предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа | |
σсж0,05 и σсж | - предел текучести при сжатии, МПа |
J-1 | - предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа | |
ν | - относительный сдвиг, % |
n | - количество циклов нагружения | |
sв | - предел кратковременной прочности, МПа | R и ρ | - удельное электросопротивление, Ом·м | |
ψ | - относительное сужение, % |
E | - модуль упругости нормальный, ГПа | |
KCU и KCV | - ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см2 | T | - температура, при которой получены свойства, Град | |
sT | - предел пропорциональности (предел текучести для остаточной деформации), МПа | l и λ | - коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С) | |
HB | - твердость по Бринеллю |
C | - удельная теплоемкость материала (диапазон 20o - T ), [Дж/(кг·град)] | |
HV |
- твердость по Виккерсу | pn и r | - плотность кг/м3 | |
HRCэ |
- твердость по Роквеллу, шкала С |
а | - коэффициент температурного (линейного) расширения (диапазон 20o - T ), 1/°С | |
HRB | - твердость по Роквеллу, шкала В |
σtТ | - предел длительной прочности, МПа | |
HSD |
- твердость по Шору | G | - модуль упругости при сдвиге кручением, ГПа |